F325: Equilibria, Energetics and Elements 5.1.3 Acids, Bases \& Buffers

117 marks

1. Phenol, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$, is a powerful disinfectant and antiseptic.

Phenol is a weak Brønsted-Lowry acid.

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{a}}=1.3 \times 10^{-10} \mathrm{~mol} \mathrm{dm}^{-3}
$$

Define the following terms:
(i) A Brønsted-Lowry acid,
(ii) A weak acid.
2. When phenol is mixed with aqueous sodium hydroxide, an acid-base reaction takes place.

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

\qquad
\qquad
\qquad
\qquad
In the available spaces,

- label one conjugate acid-base pair as acid 1 and base 1,
- label the other conjugate acid-base pair as acid 2 and base 2.

3. A solution of phenol in water has a concentration of $4.7 \mathrm{~g} \mathrm{dm}^{-3}$.
(i) Write an expression for the acid dissociation constant, K_{a}, of phenol.
(ii) Calculate the pH of this solution of phenol.
4. As part of an investigation, a student needed to prepare a buffer solution with a pH value of 8.71 . From the K_{a} value of phenol, the student thought that a mixture of phenol and sodium phenoxide could be used to prepare this buffer solution.

The student decided to use a $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of phenol, mixed with an equal volume of sodium phenoxide.

Use your knowledge of buffer solutions to determine the concentration of sodium phenoxide solution that the student would need to mix with the $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$ phenol solution.
5. In sewage plants, biological activity can be reduced by increasing the pH of the water. This is achieved by adding small amounts of solid calcium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$, to the sewage water.

In all parts of this question, assume that measurements have been made at $25^{\circ} \mathrm{C}$.
(a) The pH of aqueous solutions is determined by K_{w}. K_{w} has a value of $1.0 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ at $25^{\circ} \mathrm{C}$.
(i) What name is given to K_{w} ?
\qquad
(ii) Write the expression for K_{w}.
\qquad
(b) A chemist checked the concentration of aqueous calcium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$, in the sewage water by titration with $5.00 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid.

$$
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The chemist titrated $25.0 \mathrm{~cm}^{3}$ of the sewage water with $21.35 \mathrm{~cm}^{3}$ of HCl to reach the endpoint of the titration.

Calculate the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of the calcium hydroxide in the sewage water.

$$
\text { concentration }=
$$

\qquad $\mathrm{mol} \mathrm{dm}^{-3}$
(c) The chemist analysed a sample of water from another part of the sewage works and he found that the calcium hydroxide concentration was $2.7 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$. When solid calcium hydroxide dissolves in water, its ions completely dissociate.

$$
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})
$$

Calculate the pH of this sample.
(d) After further treatment, the water could be used for drinking. In the drinking water produced, the OH^{-}concentration was 100 times greater than the H^{+} concentration.

What was the pH of this drinking water?
6. 'Superphosphate' fertilisers contain calcium dihydrogenphosphate, $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$. This compound is one of the world's most important fertilisers. When dissolved in water, $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ dissociates forming $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$ions which are easily taken up by plants.
(a) Calcium dihydrogenphosphate, $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$, is produced by treating rock phosphate, containing $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$, with sulphuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Write a balanced equation for this reaction.
\qquad
(b) Aqueous $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$ions can act as a weak acid.

Write an equation to represent the dissociation of the $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$ion.
\qquad
(c) The $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$ion can act as either an acid or a base.
(i) State the formula of the conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$.
\qquad
(ii) State the formula of the conjugate acid of $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$.
\qquad
(iii) A solution of calcium dihydrogenphosphate, $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$, in water acts as a buffer solution.

Suggest, with the aid of equations, how this buffering action takes place.
\qquad
\qquad
\qquad
\qquad
\qquad
7. This question looks at two acids:

- methanoic acid, HCOOH , a weak organic acid;
- nitric acid, HNO_{3}, a strong acid which can also act as a powerful oxidising agent.

Methanoic acid is a weak Brønsted-Lowry acid.
Explain what is meant by a weak Brønsted-Lowry acid.
\qquad
\qquad
\qquad
8. Calculate the pH of a $0.025 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of methanoic acid. Show your working. For $\mathrm{HCOOH}, K_{a}=1.58 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$.

```
pH=
```

\qquad
9. Methanoic acid is a component of a buffer solution used in shampoos. The buffer solution can be made by mixing methanoic acid with another chemical.
(i) State what is meant by a buffer solution.
\qquad
\qquad
(ii) Suggest a chemical that could be added to methanoic acid to prepare a buffer solution. Explain your answer.
\qquad
\qquad
(iii) What factors determine the pH of a buffer solution?
\qquad
\qquad
\qquad
10. Nitric acid, HNO_{3}, is sold by a chemical supplier as a 65% solution, by mass. As supplied, each cubic decimetre of this nitric acid has a mass of 1400 g .

Calculate the pH of this solution.
11. When dilute, nitric acid behaves as a typical acid.

Write an equation for the reaction of nitric acid with limestone.
\qquad
12. When nitric acid is added to methanoic acid, the acid-base equilibrium below is set up.

$$
\mathrm{HNO}_{3}+\mathrm{HCOOH} \rightleftharpoons \mathrm{NO}_{3}^{-}+\mathrm{HCOOH}_{2}^{+}
$$

Use this equilibrium to explain what is meant by the term conjugate acid-base pairs.
\qquad
\qquad
\qquad
\qquad
13. A student analysed an unsaturated carboxylic acid, A, using a titration procedure.

The student dissolved 2.580 g of the compound in water and made the solution up to $250.0 \mathrm{~cm}^{3}$. The student titrated $25.0 \mathrm{~cm}^{3}$ of this solution with $0.1263 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}$. The volume of $\mathrm{NaOH}(\mathrm{aq})$ required to reach the end point was $23.75 \mathrm{~cm}^{3}$.

Each molecule of \mathbf{A} has one acidic hydrogen atom and \mathbf{A} behaves as a monoprotic (or monobasic) acid.

- Calculate the molar mass of the unsaturated carboxylic acid.
- Determine the molecular formula and possible displayed or skeletal formulae of the carboxylic acid.

14. Methanoic acid, HCOOH , is a weak organic acid which occurs naturally in ants and stinging nettles.
(a) Use an equation for the dissociation of methanoic acid to show what is meant by a weak acid.
\qquad
\qquad
(b) A $1.50 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ solution of HCOOH has $\left[\mathrm{H}^{+}\right]=1.55 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$.
(i) Calculate the pH of this solution and give one reason why the pH scale is a more convenient measurement for measuring acid concentrations than $\left[\mathrm{H}^{+}\right]$.
\qquad
\qquad
\qquad
(ii) Write the expression for K_{a} for methanoic acid.
(iii) Calculate the values of K_{a} and $\mathrm{p} K_{\mathrm{a}}$ for methanoic acid.
(iv) Estimate the percentage of HCOOH molecules that have dissociated in this aqueous solution of methanoic acid.
15. A student titrated the $1.50 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ methanoic acid with aqueous sodium hydroxide.
A $25.00 \mathrm{~cm}^{3}$ sample of the $\mathrm{HCOOH}(\mathrm{aq})$ was placed in a conical flask and the $\mathrm{NaOH}(\mathrm{aq})$ was added from a burette until the pH no longer changed.
(i) Write a balanced equation for the reaction between $\mathrm{HCOOH}(\mathrm{aq})$ and $\mathrm{NaOH}(\mathrm{aq})$.
\qquad
(ii) Part of the pH curve for this titration is shown below.

Calculate the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of the aqueous sodium hydroxide.
concentration $=$ \qquad $\mathrm{mol} \mathrm{dm}{ }^{-3}$
(iii) Calculate the pH of the aqueous sodium hydroxide.
$K_{\mathrm{w}}=1.00 \times 10^{-14} \mathrm{~mol} \mathrm{dm}^{-3}$

$$
\mathrm{pH}=
$$

\qquad
(iv) The pH ranges in which colour changes for three acid-base indicators are shown below.

indicator	pH range
metacresol purple	$7.4-9.0$
2,4,6-trinitrotoluene	$11.5-13.0$
ethyl orange	$3.4-4.8$

Explain which of the three indicators is suitable for this titration.
\qquad
\qquad
\qquad
16. The K_{a} values for three acids are shown in the table below.

acid		$K_{\mathrm{a}} / \mathrm{mol} \mathrm{dm}^{-3}$
ethanoic acid	$\mathrm{CH}_{3} \mathrm{COOH}$	1.70×10^{-5}
phenol	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	1.28×10^{-10}
sulphurous acid	$\mathrm{H}_{2} \mathrm{SO}_{3}$	1.50×10^{-2}

(a) What information is provided by K_{a} values?
\qquad
\qquad
(b) When sulphurous acid and ethanoic acid are mixed together, an acid-base reaction takes place.

$$
\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightleftharpoons \mathrm{HSO}_{3}^{-}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}(\mathrm{aq})
$$

(i) In the spaces above

- label one conjugate acid-base pair as acid 1 and base 1 ,
- label the other conjugate acid-base pair as acid 2 and base 2.
(ii) Predict and explain the acid-base reaction that would take place if ethanoic acid were mixed with phenol. Include an equation in your answer.
\qquad
\qquad
\qquad
\qquad
(c) The pH value of $0.0450 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid is different from that of $0.0450 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid.

Calculate the pH values of these two acids. Show all your working.
17. An excess of magnesium was added to $100 \mathrm{~cm}^{3}$ of $0.0450 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid. The same mass of magnesium was added to $100 \mathrm{~cm}^{3}$ of $0.0450 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid.

Both reactions produced $54 \mathrm{~cm}^{3}$ of hydrogen gas, measured at room temperature and pressure, but the reaction with ethanoic acid took much longer to produce this gas volume.

Explain why the reactions produced the same volume of a gas but at different rates.
Use equations in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
18. Chocolate mousse contains gelatine and a compound to promote fast setting of the mousse.

Compound \mathbf{A} is such a setting agent. It has two acidic hydrogen atoms per molecule and is one of the six acids listed below.
oxalic acid HOOCCOOH
malonic acid $\mathrm{HOOCCH}_{2} \mathrm{COOH}$
succinic acid $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}$
glutaric acid $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOH}$
adipic acid $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$
pimelic acid $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{COOH}$

The student analysed a sample of compound \mathbf{A} by titration.
The student dissolved 2.82 g of compound \mathbf{A} in water and made the solution up to 250 cm 3 in a volumetric flask. He titrated $25.0 \mathrm{~cm}^{3}$ of this solution with $0.175 \mathrm{~mol} \mathrm{dm}^{-3}$ NaOH .
$22.05 \mathrm{~cm}^{3}$ of NaOH were required for complete neutralisation.
Use the results of the student's analysis to identify compound \mathbf{A} from the list above.
Show all of your working.
19. Phenol, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$, is a powerful disinfectant and antiseptic. Phenol is a weak Brønsted-Lowry acid.

What is meant by the following terms;
(i) a Brønsted-Lowry acid;
\qquad
(ii) a weak acid?
\qquad
\qquad
20. When phenol is mixed with aqueous sodium hydroxide, an acid-base reaction takes place.
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
......................
In the spaces above,

- label one conjugate acid-base pair as acid 1 and base 1 ,
- label the other conjugate acid-base pair as acid 2 and base 2.

21. A solution of phenol in water has a concentration of $38 \mathrm{~g} \mathrm{dm}^{-3}$.

The acid dissociation constant, K_{a}, of phenol is $1.3 \times 10^{-10} \mathrm{~mol} \mathrm{dm}^{-3}$.
(i) Write an expression for the acid dissociation constant, K_{a}, of phenol.
(ii) Calculate the pH of this solution.
22. Hexylresorcinol is an antiseptic used in solutions for cleansing wounds and in mouthwashes and throat lozenges.

The structure of hexylresorcinol is shown below.

Identify a compound that could be added to hexylresorcinol to make a buffer solution. Explain your answer.
23. A student carried out an investigation with aqueous solutions of nitric acid, sodium hydroxide, ethanoic acid and water.

Nitric acid, HNO_{3}, is a strong Brønsted-Lowry acid.
(i) Explain what is meant by a strong acid and a Brønsted-Lowry acid.
\qquad
\qquad
\qquad
(ii) What is the conjugate base formed from HNO_{3} ?
\qquad
24. A student carried out an investigation with aqueous solutions of nitric acid, sodium hydroxide, ethanoic acid and water.

The student diluted $0.015 \mathrm{~mol} \mathrm{dm}^{-3}$ nitric acid with an equal volume of water and measured the pH of the diluted acid at $25^{\circ} \mathrm{C}$.
(i) Calculate the pH of $0.015 \mathrm{~mol} \mathrm{dm}^{-3}$ nitric acid.
(ii) Calculate the pH of the diluted acid.
25. A student measured the pH of a solution of sodium hydroxide as 13.54 at $25^{\circ} \mathrm{C}$.

$$
K \mathrm{w}=1.0 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6} \text { at } 25^{\circ} \mathrm{C} .
$$

(i) Write down an expression for the ionic product, K_{w}, for water.
\qquad
(ii) Calculate the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of this solution of sodium hydroxide.
26. A student prepared two solutions.

- \quad Solution \mathbf{A} was made by mixing together $25 \mathrm{~cm}^{3} 0.010 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium hydroxide with $50 \mathrm{~cm}^{3} 0.010 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid, $\mathrm{CH}_{3} \mathrm{COOH}$. Solution \mathbf{A} is a buffer solution.
- Solution \mathbf{B} was made by mixing together $25 \mathrm{~cm}^{3} 0.020 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium hydroxide with $50 \mathrm{~cm}^{3} 0.010 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid, $\mathrm{CH}_{3} \mathrm{COOH}$. Solution \mathbf{B} is not a buffer solution.
(i) What is meant by a buffer solution?
\qquad
\qquad
(ii) Explain why Solution \mathbf{A} is a buffer solution whereas Solution \mathbf{B} is not.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

27. A student measured the pH of water as 7.0 at $25^{\circ} \mathrm{C}$. The student then warmed the water to $40^{\circ} \mathrm{C}$ and measured the pH as 6.7 .

What do these results tell you about the tendency of water to ionise as it gets warmer? Explain your reasoning in terms of equilibrium.
\qquad
\qquad
\qquad
\qquad

